Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
1.
ACS Nano ; 16(8): 12290-12304, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35942986

ABSTRACT

Assessment of drug activation and subsequent interaction with targets in living tissues could guide nanomedicine design, but technologies enabling insight into how a drug reaches and binds its target are limited. We show that a Hoechst-based reporter system can monitor drug release and engagement from a nanoparticle delivery system in vitro and in vivo, elucidating differences in target-bound drug distribution related to drug-linker and nanoparticle properties. Drug engagement is defined as chemical detachment of drug or reporter from a nanoparticle and subsequent binding to a subcellular target, which in the case of Hoechst results in a fluorescence signal. Hoechst-based nanoreporters for drug activation contain prodrug elements such as dipeptide linkers, conjugation handles, and nanoparticle modifications such as targeting ligands to determine how nanomedicine design affects distribution of drug engaged with a subcellular target, which is tracked via cellular nuclear fluorescence in situ. Furthermore, the nanoplatform is amenable toward common maleimide-based linkers found in many prodrug-based delivery systems including polymer-, peptide-, and antibody-drug conjugates. Findings from the Hoechst reporter system were applied to develop highly potent, targeted, anticancer micelle nanoparticles delivering a monomethyl auristatin E (MMAE) prodrug comprising the same linkers employed in Hoechst studies. MMAE nanomedicine with the optimal drug-linker resulted in effective tumor growth inhibition in mice without associated acute toxicity, whereas the nonoptimal linker that showed broader drug activation in Hoechst reporter studies resulted in severe toxicity. Our results demonstrate the potential to synergize direct visualization of drug engagement with nanomedicine drug-linker design to optimize safety and efficacy.


Subject(s)
Antineoplastic Agents , Immunoconjugates , Nanoparticles , Prodrugs , Mice , Animals , Prodrugs/chemistry , Xenograft Model Antitumor Assays , Immunoconjugates/chemistry , Micelles , Nanoparticles/therapeutic use , Nanoparticles/chemistry , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Drug Delivery Systems
2.
Commun Biol ; 4(1): 1048, 2021 09 08.
Article in English | MEDLINE | ID: mdl-34497355

ABSTRACT

In a biologic therapeutic landscape that requires versatility in targeting specificity, valency and half-life modulation, the monomeric Fc fusion platform holds exciting potential for the creation of a class of monovalent protein therapeutics that includes fusion proteins and bispecific targeting molecules. Here we report a structure-guided approach to engineer monomeric Fc molecules to adapt multiple versions of half-life extension modifications. Co-crystal structures of these monomeric Fc variants with Fc neonatal receptor (FcRn) shed light into the binding interactions that could serve as a guide for engineering the half-life of antibody Fc fragments. These engineered monomeric Fc molecules also enabled the generation of a novel monovalent bispecific molecular design, which translated the FcRn binding enhancement to improvement of in vivo serum half-life.


Subject(s)
Histocompatibility Antigens Class I/metabolism , Immunoglobulin Fc Fragments/metabolism , Receptors, Fc/metabolism , Animals , Half-Life , Histocompatibility Antigens Class I/pharmacology , Humans , Immunoglobulin Fc Fragments/pharmacology , Mice , Mice, Transgenic , Protein Engineering
4.
Mol Cancer Ther ; 20(3): 541-552, 2021 03.
Article in English | MEDLINE | ID: mdl-33653945

ABSTRACT

Resistance to antibody-drug conjugates (ADCs) has been observed in both preclinical models and clinical studies. However, mechanisms of resistance to pyrrolobenzodiazepine (PBD)-conjugated ADCs have not been well characterized and thus, this study was designed to investigate development of resistance to PBD dimer warheads and PBD-conjugated ADCs. We established a PBD-resistant cell line, 361-PBDr, by treating human breast cancer MDA-MB-361 cells with gradually increasing concentrations of SG3199, the PBD dimer released from the PBD drug-linker tesirine. 361-PBDr cells were over 20-fold less sensitive to SG3199 compared with parental cells and were cross-resistant to other PBD warhead and ADCs conjugated with PBDs. Proteomic profiling revealed that downregulation of Schlafen family member 11 (SLFN11), a putative DNA/RNA helicase, sensitizing cancer cells to DNA-damaging agents, was associated with PBD resistance. Confirmatory studies demonstrated that siRNA knockdown of SLFN11 in multiple tumor cell lines conferred reduced sensitivity to SG3199 and PBD-conjugated ADCs. Treatment with EPZ011989, an EZH2 inhibitor, derepressed SLFN11 expression in 361-PBDr and other SLFN11-deficient tumor cells, and increased sensitivity to PBD and PBD-conjugated ADCs, indicating that the suppression of SLFN11 expression is associated with histone methylation as reported. Moreover, we demonstrated that combining an ataxia telangiectasia and Rad3-related protein (ATR) inhibitor, AZD6738, with SG3199 or PBD-based ADCs led to synergistic cytotoxicity in either resistant 361-PBDr cells or cells that SLFN11 was knocked down via siRNA. Collectively, these data provide insights into potential development of resistance to PBDs and PBD-conjugated ADCs, and more importantly, inform strategy development to overcome such resistance.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Benzodiazepines/metabolism , Nuclear Proteins/metabolism , Pyrroles/metabolism , Down-Regulation , Drug Resistance, Neoplasm , Female , Humans , Transfection
5.
Sci Rep ; 10(1): 17257, 2020 10 14.
Article in English | MEDLINE | ID: mdl-33057063

ABSTRACT

Neuregulin protein 1 (NRG1) is a large (> 60-amino-acid) natural peptide ligand for the ErbB protein family members HER3 and HER4. We developed an agonistic antibody modality, termed antibody ligand mimetics (ALM), by incorporating complex ligand agonists such as NRG1 into an antibody scaffold. We optimized the linker and ligand length to achieve native ligand activity in HEK293 cells and cardiomyocytes derived from induced pluripotent stem cells (iPSCs) and used a monomeric Fc-ligand fusion platform to steer the ligand specificity toward HER4-dominant agonism. With the help of selectivity engineering, these enhanced ALM molecules can provide an antibody scaffold with increased receptor specificity and the potential to greatly improve the pharmacokinetics, stability, and downstream developability profiles from the natural ligand approach. This ligand mimetic design and optimization approach can be expanded to apply to other cardiovascular disease targets and emerging therapeutic areas, providing differentiated drug molecules with increased specificity and extended half-life.


Subject(s)
Antibodies, Monoclonal/chemistry , Neuregulin-1/chemistry , Receptor, ErbB-4/agonists , Antibodies, Monoclonal/metabolism , HEK293 Cells , Humans , Induced Pluripotent Stem Cells/chemistry , Induced Pluripotent Stem Cells/metabolism , Kinetics , Ligands , Myocytes, Cardiac/chemistry , Myocytes, Cardiac/metabolism , Neuregulin-1/metabolism , Protein Binding , Receptor, ErbB-4/metabolism , Signal Transduction
6.
Biomacromolecules ; 21(9): 3596-3607, 2020 09 14.
Article in English | MEDLINE | ID: mdl-32786528

ABSTRACT

Synthetic gene delivery systems employ multiple functions to enable safe and effective transport of DNA to target cells. Here, we describe metabolite-based poly(l-lysine) (PLL) modifiers that improve transfection by imparting both pH buffering and nanoparticle stabilization functions within a single molecular unit. PLL modifiers were based on morpholine (M), morpholine and niacin (MN), or thiomorpholine (TM). PLL modification with (MN) or (TM) imparted buffering function over the pH range of 5-7 both in solution and live cells and enhanced the stability of PLL DNA nanoparticles, which exhibited higher resistance to polyanion exchange and prolonged blood circulation. These properties translated into increased transfection efficiency in vitro coupled with reduced toxicity compared to unmodified PLL and PLL(M). Furthermore, PEG-PLL(MN) DNA nanoparticles transfected muscle tissue in vivo for >45 days following intramuscular injection. These polymer modifiers demonstrate the successful design of multifunctional units that improve transfection of synthetic gene delivery systems while maintaining biocompatibility.


Subject(s)
Gene Transfer Techniques , Polylysine , DNA/genetics , Genetic Therapy , Polyethylene Glycols , Transfection
7.
PLoS One ; 15(6): e0234268, 2020.
Article in English | MEDLINE | ID: mdl-32497150

ABSTRACT

Annexin A1 (anxA1) is an immunomodulatory protein that has been proposed as a tumor vascular target for antitumor biologic agents, yet to date the vascular expression of anxA1 in specific tumor indications has not been systematically assessed. Attempts to evaluate vascular anxA1 expression by immunohistochemistry are complicated by a lack of available antibodies that are both specific for anxA1 and bind the N-terminal-truncated form of anxA1 that has previously been identified in tumor vasculature. To study the vascular expression pattern of anxA1 in non-small-cell lung carcinoma (NSCLC), we isolated an antibody capable of binding N-terminal-truncated anxA127-346 and employed it in immunohistochemical studies of human lung specimens. Lung tumor specimens evaluated with this antibody revealed vascular (endothelial) anxA1 expression in five of eight tumor samples studied, but no vascular anxA1 expression was observed in normal lung tissue. Tumor microarray analysis further demonstrated positive vascular staining for anxA1 in 30 of 80 NSCLC samples, and positive staining of neoplastic cells was observed in 54 of 80 samples. No correlation was observed between vascular and parenchymal anxA1 expression. Two rodent tumor models, B16-F10 and Py230, were determined to have upregulated anxA1 expression in the intratumoral vasculature. These data validate anxA1 as a potential vascular anti-tumor target in a subset of human lung tumors and identify rodent models which demonstrate anxA1 expression in tumor vasculature.


Subject(s)
Annexin A1/metabolism , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/metabolism , Up-Regulation , Animals , Carcinoma, Non-Small-Cell Lung/blood supply , Cell Line, Tumor , Disease Models, Animal , Female , Humans , Lung Neoplasms/blood supply , Mice
8.
ACS Chem Biol ; 15(4): 830-836, 2020 04 17.
Article in English | MEDLINE | ID: mdl-32155049

ABSTRACT

Efficacious use of therapeutic gene delivery via nanoparticles is hampered by the challenges associated with targeted delivery to tissues of interest. Systemic administration of lipid nanoparticle (LNP)-encapsulated mRNA leads to a protein expressed predominantly in the liver and spleen. Here, LNP encapsulating mRNA was covalently conjugated to an antibody, specifically binding plasmalemma vesicle-associated protein (PV1) as a means to target lung tissue. Systemic administration of PV1-targeted LNPs demonstrated significantly increased delivery of mRNA to the lungs and a 40-fold improvement in protein expression in the lungs, compared with control LNPs. We also investigated the effect of LNP size to determine optimal tissue distribution and transfection. Larger-size PV1-targeted LNPs not only have the elasticity to target the PV1 expressed in the caveolae but also enable robust mRNA expression in the lungs. Targeted delivery of mRNA to the lungs is a promising approach in the treatment of lung diseases.


Subject(s)
Drug Carriers/chemistry , Lipids/chemistry , Lung/metabolism , Nanoparticles/chemistry , RNA, Messenger/pharmacology , Animals , Antibodies, Immobilized/chemistry , Antibodies, Immobilized/immunology , Caveolae/immunology , Female , Gene Transfer Techniques , Membrane Proteins/immunology , Mice, Inbred BALB C
9.
MAbs ; 12(1): 1690959, 2020.
Article in English | MEDLINE | ID: mdl-31829766

ABSTRACT

Complement-dependent cytotoxicity (CDC) is a potent effector mechanism, engaging both innate and adaptive immunity. Although strategies to improve the CDC activity of antibody therapeutics have primarily focused on enhancing the interaction between the antibody crystallizable fragment (Fc) and the first subcomponent of the C1 complement complex (C1q), the relative importance of intrinsic affinity and binding valency of an antibody to the target antigen is poorly understood. Here we show that antibody binding affinity to a cell surface target antigen evidently affects the extent and efficacy of antibody-mediated complement activation. We further report the fundamental role of antibody binding valency in the capacity to recruit C1q and regulate CDC. More specifically, an array of affinity-modulated variants and functionally monovalent bispecific derivatives of high-affinity anti-epidermal growth factor receptor (EGFR) and anti-human epidermal growth factor receptor 2 (HER2) therapeutic immunoglobulin Gs (IgGs), previously reported to be deficient in mediating complement activation, were tested for their ability to bind C1q by biolayer interferometry using antigen-loaded biosensors and to exert CDC against a panel of EGFR and HER2 tumor cells of various histological origins. Significantly, affinity-reduced variants or monovalent derivatives, but not their high-affinity bivalent IgG counterparts, induced near-complete cell cytotoxicity in tumor cell lines that had formerly been shown to be resistant to complement-mediated attack. Our findings suggest that monovalent target engagement may contribute to an optimal geometrical positioning of the antibody Fc to engage C1q and deploy the complement pathway.


Subject(s)
Antibodies, Bispecific/metabolism , Immunoglobulin G/metabolism , Antibodies, Bispecific/genetics , Antibody Affinity/genetics , Antibody-Dependent Cell Cytotoxicity , Antigen-Antibody Reactions , Cell Line, Tumor , Complement Activation , Complement C1q/metabolism , ErbB Receptors/immunology , ErbB Receptors/metabolism , Humans , Immunoglobulin Fc Fragments/metabolism , Immunoglobulin G/genetics , Interferometry , Mutagenesis, Site-Directed , Protein Binding/genetics , Receptor, ErbB-2/immunology , Receptor, ErbB-2/metabolism
10.
Mol Pharm ; 17(2): 507-516, 2020 02 03.
Article in English | MEDLINE | ID: mdl-31841002

ABSTRACT

Targeted strategies to deliver and retain drugs to kidneys are needed to improve drug accumulation and efficacy in a myriad of kidney diseases. These drug delivery systems show potential for improving the therapeutic windows of drugs acting in the kidney. Biodistribution of antibody-based therapeutics in vivo is governed by several factors including binding affinity, size, and valency. Investigations of how the biophysical and biochemical properties of biologics enable them to overcome biological barriers and reach kidneys are therefore of interest. Although renal accumulation of antibody fragments in cancer diagnostics and treatment has been observed, reports on effective delivery of antibody fragments to the kidneys remain scarce. Previously, we demonstrated that targeting plasmalemma vesicle-associated protein (PV1), a caveolae-associated protein, can promote accumulation of antibodies in both the lungs and the kidneys. Here, by fine-tuning the binding affinity of an antibody toward PV1, we observe that the anti-PV1 antibody with reduced binding affinity lost the capability for kidney targeting while retaining the lung targeting activity, suggesting that binding affinity is a critical factor for kidney targeting of the anti-PV1 antibody. We next use the antibody fragment F(ab')2 targeting PV1 to assess the dual effects of rapid kidney filtration and PV1 targeting on kidney-selective targeting. Ex vivo fluorescence imaging results demonstrated that after rapidly accumulating in kidneys at 4 h, PV1-targeted F(ab')2 was continually retained in the kidney at 24 h, whereas the isotype control F(ab')2 underwent urinary elimination with significantly reduced signaling in the kidney. Confocal imaging studies confirmed the localization of PV1-targeted F(ab')2 in the kidney. In addition, the monovalent antibody fragment (Fab-C4) lost the capability for kidney homing, indicating that the binding avidity of anti-PV1 F(ab')2 is important for kidney targeting. Our findings suggest that PV1-targeted F(ab')2 might be useful as a drug carrier for renal targeting and highlight the importance of affinity optimization for tissue targeting antibodies.


Subject(s)
Antibodies, Monoclonal/immunology , Caveolae/metabolism , Drug Carriers/pharmacokinetics , Immunoglobulin Fab Fragments/immunology , Kidney/drug effects , Membrane Proteins/immunology , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/pharmacokinetics , Antibody Affinity , Drug Carriers/administration & dosage , Female , HEK293 Cells , Humans , Immunoglobulin Fab Fragments/administration & dosage , Kidney/metabolism , Lung/drug effects , Lung/metabolism , Mice , Mice, Inbred BALB C , Tissue Distribution
11.
Pharmaceutics ; 12(1)2019 Dec 18.
Article in English | MEDLINE | ID: mdl-31861347

ABSTRACT

Bispecific antibody (bsAb) applications have exponentially expanded with the advent of molecular engineering strategies that have addressed many of the initial challenges, including improper light chain pairing, heterodimer purity, aggregation, and pharmacokinetics. However, the lack of high-throughput methods for the generation of monovalent bsAbs has resulted in a bottleneck that has hampered their therapeutic evaluation, as current technologies can be cost-prohibitive and impractical. To address this issue, we incorporated single-matched point mutations in the CH3 domain to recapitulate the physiological process of human IgG4 Fab-arm exchange to generate monovalent bsAbs. Furthermore, we utilized the substitutions H435R and Y436F in the CH3 domain of IgG1, which incorporates residues from human IgG3, thus ablating protein A binding. By exploiting this combination of mutations and optimizing the reduction and reoxidation conditions for Fab arm exchange, highly pure monovalent bsAbs can be rapidly purified directly from combined culture media using standard protein A purification. This methodology, reported herein for the first time, allows for the high-throughput generation of monovalent bsAbs, thus increasing the capacity for evaluating monovalent bsAb iterations for therapeutic potential.

12.
Bioconjug Chem ; 30(9): 2340-2348, 2019 09 18.
Article in English | MEDLINE | ID: mdl-31380623

ABSTRACT

The normal electron-demand Diels-Alder (DA) cycloaddition is a classic transformation routinely used in synthesis; however, applications in biological systems are limited. Here, we report a spiro[2.4]hepta-4,6-diene-containing noncanonical amino acid (SCpHK) capable of efficient incorporation into antibodies and subsequent coupling with maleimide via a DA reaction. SCpHK was stable throughout protein expression in mammalian cells and enabled covalent attachment of maleimide drug-linkers yielding DA antibody-drug conjugates (DA-ADCs) with nearly quantitative conversion in a one-step process. The uncatalyzed DA reaction between SCpHK and maleimide in aqueous buffer was rapid (1.8-5.4 M-1 s-1), and the antibody-drug adduct was stable in rat serum for at least 1 week at 37 °C. Anti-EphA2 DA-ADCs containing AZ1508 or SG3249 maleimide drug-linkers were potent inhibitors of tumor growth in PC3 tumor models in vivo. The DA bioconjugation strategy described here represents a simple method to produce site-specific and stable ADCs with maleimide drug-linkers.


Subject(s)
Immunoconjugates/chemistry , Maleimides/chemistry , Animals , CHO Cells , Cell Survival/drug effects , Cricetulus , Cycloaddition Reaction , Humans , Immunoconjugates/pharmacology , Models, Molecular , PC-3 Cells , Protein Conformation , Spiro Compounds/chemistry
14.
Angew Chem Int Ed Engl ; 58(25): 8489-8493, 2019 06 17.
Article in English | MEDLINE | ID: mdl-31018033

ABSTRACT

Here, we describe a diene-containing noncanonical amino acid (ncAA) capable of undergoing fast and selective normal electron-demand Diels-Alder (DA) reactions following its incorporation into antibodies. A cyclopentadiene derivative of lysine (CpHK) served as the reactive handle for DA transformations and the substrate for genetic incorporation. CpHK incorporated into antibodies with high efficiency and was available for maleimide conjugation or self-reaction depending on position in the amino acid sequence. CpHK at position K274 reacted with the maleimide drug-linker AZ1508 at a rate of ≈79 m-1 s-1 to produce functional antibody-drug conjugates (ADCs) in a one-step process. Incorporation of CpHK at position S239 resulted in dimerization, which covalently linked antibody heavy chains together. The diene ncAA described here is capable of producing therapeutic protein conjugates with clinically validated and widely available maleimide compounds, while also enabling proximity-based stapling through a DA dimerization reaction.


Subject(s)
Alkadienes/chemistry , Amino Acids/chemistry , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin G/chemistry , Maleimides/chemistry , Cycloaddition Reaction , Dimerization , Humans , Models, Molecular , Molecular Structure
15.
ChemMedChem ; 14(12): 1185-1195, 2019 06 18.
Article in English | MEDLINE | ID: mdl-30980702

ABSTRACT

We describe the characterization of antigen binding fragments (Fab)-drug conjugates prepared using a dual maleimide pyrrolobenzodiazepine dimer cytotoxic payload (SG3710). Pyrrolobenzodiazepine dimers, which are DNA cross-linkers, are a class of payloads used in antibody-drug conjugates (ADCs). SG3710 was designed to rebridge two adjacent cysteines, such as those that form the canonical interchain disulfide bond between the light and heavy chain in Fab fragments. The rebridging generated homogenous Fab conjugates, with a drug-to-Fab ratio of one, as demonstrated by the preparation of rebridged Fabs derived from the anti-HER2 trastuzumab antibody and from a negative control antibody both prepared using recombinant expression and papain digestion. The resulting anti-HER2 trastuzumab Fab-rebridged conjugate retained antigen binding, was stable in rat serum, and demonstrated potent and antigen-dependent cancer cell-killing ability. Disulfide rebridging with SG3710 is a generic approach to prepare Fab-pyrrolobenzodiazepine dimer conjugates, which does not require the Fabs to be engineered for conjugation. Thus, SG3710 offers a flexible and straightforward platform for the controlled assembly of pyrrolobenzodiazepine dimer conjugates from any Fab for oncology applications.


Subject(s)
Benzodiazepines/pharmacology , Disulfides/pharmacology , Immunoconjugates/pharmacology , Immunoglobulin Fab Fragments/immunology , Maleimides/pharmacology , Pyrroles/pharmacology , Trastuzumab/pharmacology , Animals , Benzodiazepines/blood , Benzodiazepines/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Disulfides/blood , Disulfides/chemistry , Dose-Response Relationship, Drug , Humans , Immunoconjugates/blood , Immunoconjugates/chemistry , Immunoglobulin Fab Fragments/blood , Immunoglobulin Fab Fragments/chemistry , Maleimides/blood , Maleimides/chemistry , Molecular Structure , Pyrroles/blood , Pyrroles/chemistry , Rats , Structure-Activity Relationship , Trastuzumab/blood , Trastuzumab/chemistry
16.
Bioconjug Chem ; 30(4): 1232-1243, 2019 04 17.
Article in English | MEDLINE | ID: mdl-30912649

ABSTRACT

Despite some clinical success with antibody-drug conjugates (ADCs) in patients with solid tumors and hematological malignancies, improvements in ADC design are still desirable due to the narrow therapeutic window of these compounds. Tumor-targeting antibody fragments have distinct advantages over monoclonal antibodies, including more rapid tumor accumulation and enhanced penetration, but are subject to rapid clearance. Half-life extension technologies such as PEGylation and albumin-binding domains (ABDs) have been widely used to improve the pharmacokinetics of many different types of biologics. PEGylation improves pharmacokinetics by increasing hydrodynamic size to reduce renal clearance, whereas ABDs extend half-life via FcRn-mediated recycling. In this study, we used an anti-oncofetal antigen 5T4 diabody conjugated with a highly potent cytotoxic pyrrolobenzodiazepine (PBD) warhead to assess and compare the effects of PEGylation and albumin binding on the in vivo efficacy of antibody fragment drug conjugates. Conjugation of 2× PEG20K to a diabody improved half-life from 40 min to 33 h, and an ABD-diabody fusion protein exhibited a half-life of 45 h in mice. In a xenograft model of breast cancer MDA-MB-436, the ABD-diabody-PBD showed greater tumor growth suppression and better tolerability than either PEG-diabody-PBD or diabody-PBD. These results suggest that the mechanism of half-life extension is an important consideration for designing cytotoxic antitumor agents.


Subject(s)
Antineoplastic Agents/therapeutic use , Immunoconjugates/therapeutic use , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Binding, Competitive , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Enzyme-Linked Immunosorbent Assay , Female , Half-Life , Humans , Immunoconjugates/chemistry , Immunoconjugates/pharmacokinetics , Mice , Mice, Nude , Polyethylene Glycols/chemistry , Xenograft Model Antitumor Assays
17.
MAbs ; 11(3): 500-515, 2019 04.
Article in English | MEDLINE | ID: mdl-30835621

ABSTRACT

Most strategies used to prepare homogeneous site-specific antibody-drug conjugates (ADCs) result in ADCs with a drug-to-antibody ratio (DAR) of two. Here, we report a disulfide re-bridging strategy to prepare homogeneous ADCs with DAR of one using a dual-maleimide pyrrolobenzodiazepine (PBD) dimer (SG3710) and an engineered antibody (Flexmab), which has only one intrachain disulfide bridge at the hinge. We demonstrate that SG3710 efficiently re-bridge a Flexmab targeting human epidermal growth factor receptor 2 (HER2), and the resulting ADC was highly resistant to payload loss in serum and exhibited potent anti-tumor activity in a HER2-positive gastric carcinoma xenograft model. Moreover, this ADC was tolerated in rats at twice the dose compared to a site-specific ADC with DAR of two prepared using a single-maleimide PBD dimer (SG3249). Flexmab technologies, in combination with SG3710, provide a platform for generating site-specific homogenous PBD-based ADCs with DAR of one, which have improved biophysical properties and tolerability compared to conventional site-specific PBD-based ADCs with DAR of two.


Subject(s)
Antineoplastic Agents , Benzodiazepines/chemistry , Immunoconjugates , Pyrroles/chemistry , Receptor, ErbB-2/antagonists & inhibitors , Stomach Neoplasms/drug therapy , Trastuzumab , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Female , Humans , Immunoconjugates/chemistry , Immunoconjugates/pharmacology , MCF-7 Cells , Mice, Nude , Rats , Receptor, ErbB-2/metabolism , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Trastuzumab/chemistry , Trastuzumab/pharmacology , Xenograft Model Antitumor Assays
18.
Commun Biol ; 2: 92, 2019.
Article in English | MEDLINE | ID: mdl-30854484

ABSTRACT

Systemic administration of bio-therapeutics can result in only a fraction of drug reaching targeted tissues, with the majority of drug being distributed to tissues irrelevant to the drug's site of action. Targeted delivery to specific organs may allow for greater accumulation, better efficacy, and improved safety. We investigated how targeting plasmalemma vesicle-associated protein (PV1), a protein found in the endothelial caveolae of lungs and kidneys, can promote accumulation in these organs. Using ex vivo fluorescence imaging, we show that intravenously administered αPV1 antibodies localize to mouse lungs and kidneys. In a bleomycin-induced idiopathic pulmonary fibrosis (IPF) mouse model, αPV1 conjugated to Prostaglandin E2 (PGE2), a known anti-fibrotic agent, significantly reduced collagen content and fibrosis whereas a non-targeted PGE2 antibody conjugate failed to slow fibrosis progression. Our results demonstrate that PV1 targeting can be utilized to deliver therapeutics to lungs and this approach is potentially applicable for various lung diseases.


Subject(s)
Drug Carriers , Drug Delivery Systems , Idiopathic Pulmonary Fibrosis/drug therapy , Membrane Proteins/metabolism , Animals , Biomarkers , Bleomycin/adverse effects , Dinoprostone/metabolism , Disease Models, Animal , Gene Expression , Humans , Idiopathic Pulmonary Fibrosis/etiology , Idiopathic Pulmonary Fibrosis/pathology , Immunohistochemistry , Kidney/metabolism , Kidney/pathology , Lung/drug effects , Lung/metabolism , Lung/pathology , Membrane Proteins/chemistry , Membrane Proteins/genetics , Mice
19.
PLoS One ; 14(1): e0211236, 2019.
Article in English | MEDLINE | ID: mdl-30682117

ABSTRACT

Interleukin-21 (IL-21), a member of the common cytokine receptor γ chain (γc) family, is secreted by CD4+ T cells and natural killer T cells and induces effector function through interactions with the IL-21 receptor (IL-21R)/γc complex expressed on both immune and non-immune cells. Numerous studies suggest that IL-21 plays a significant role in autoimmune disorders. Therapeutic intervention to disrupt the IL-21/IL-21R/γc interaction and inhibit subsequent downstream signal transduction could offer a treatment paradigm for these diseases. Potent neutralizing antibodies reported in the literature were generated after extensive immunizations with human IL-21 alone and in combination with various adjuvants. To circumvent the laborious method of antibody generation while targeting a conserved functional epitope, we designed a novel alternating-antigen immunization strategy utilizing both human and cynomolgus monkey (cyno) IL-21. Despite the high degree of homology between human and cyno IL-21, our alternating-immunization strategy elicited higher antibody titers and more potent neutralizing hybridomas in mice than did the immunization with human IL-21 antigen alone. The lead hybridoma clone was humanized by grafting the murine complementarity-determining regions onto human germline framework templates, using a unique rational design. The final humanized and engineered antibody, MEDI7169, encodes only one murine residue at the variable heavy/light-chain interface, retains the sub-picomolar affinity for IL-21, specifically inhibits IL-21/IL-21R-mediated signaling events and is currently under clinical development as a potential therapeutic agent for autoimmune diseases. This study provides experimental evidence of the immune system's potential to recognize and respond to shared epitopes of antigens from distinct species, and presents a generally applicable, novel method for the rapid generation of exceptional therapeutic antibodies using the hybridoma platform.


Subject(s)
Antibodies, Monoclonal, Humanized/metabolism , Antibodies, Neutralizing/metabolism , Interleukins/immunology , Macaca fascicularis/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , Disease Models, Animal , Humans , Hybridomas/immunology , Immunization , Mice
20.
Data Brief ; 21: 2208-2220, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30533469

ABSTRACT

Experimental procedures and 1H and 13C NMR of the heterotrifunctional linker used for preparation of dual drug conjugates and PBD payload are included. Procedure for carrying preparation of antibody linker conjugate via thiol maleimide conjugation and antibody drug conjugates (ADCs) using copper assisted click reaction and oxime ligation, their cell viability assay and western blotting procedures of the resultant conjugates are detailed. Also, reduced mass spectroscopy results and in vitro cytotoxicity of antibody drug conjugates used in this article are shown.

SELECTION OF CITATIONS
SEARCH DETAIL
...